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Abstract:

Introduction: Orofacial clefts, including Cleft Lip and Palate (CLP), are common congenital disabilities that often
require  non-surgical  treatments  like  Nasoalveolar  Molding  (NAM)  therapy.  This  study  aimed  to  assess  stress
distribution and potential deformation in both the viscerocranium and neurocranium of a 17-day-old neonate skull
with unilateral cleft lip and palate using Finite Element Analysis (FEA) under different applied forces.

Methods: This research was conducted in Erbil province from August 2024 to November 2024. MIMICS, 3-Matic
Medical, and ANSYS programs were used to determine the effects of Nasoalveolar Molding (NAM) therapy on cranial
and facial structures. This study included neonates who were 17 days old, diagnosed with nonsyndromic unilateral
cleft lip and palate, and had a normal head circumference.

Results: The results showed varying von Mises stress distributions, with maximum stress values of 77,053 Pa at 0.75
N, which exceeded the deformation threshold of 30,000 Pa, indicating potential viscerocranial deformation. Lower
forces (0.65 N and 0.70 N) remained below this threshold.

Discussion: The study confirmed that forces exceeding 30,000 Pa during Nasoalveolar Molding (NAM) therapy led to
potential  deformation  in  the  neonatal  viscerocranium.  Finite  element  analysis  showed  that  a  force  of  0.75  N
generated stress above this threshold.

Conclusion:  The  applied  force  during  Nasoalveolar  Molding  (NAM)  therapy  plays  a  crucial  role  in  preventing
craniofacial  deformation  in  neonates  with  unilateral  cleft  lip  and  palate.  Therefore,  managing  force  levels  in
Nasoalveolar Molding (NAM) therapy is essential to avoid potential long-term deformation.

Keywords: Finite element analysis (FEA), Nasoalveolar molding (NAM), Unilateral cleft lip and palate, Von mises
stress.
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1. INTRODUCTION
Congenital disabilities, or congenital anomalies, include

structural, metabolic, psychological, and functional abnor-
malities;  one of the most common is orofacial  cleft,  resul-
ting from improper tissue fusion early in the developmental
stage [1]. Orofacial clefts (OFCs) are defined as congenital
malformations of the upper lip and/or palate caused by the
incomplete fusion of facial structures during early embry-
onic development [2]. Orofacial Clefts (OFCs) include Cleft
Lip (CL), Cleft Palate (CP), and Cleft Lip and Palate (CLP),
arising from abnormal facial development and failed fusion
of palatal and nasal processes during gestation [3]. The pre-
valence  of  non-syndromic  clefts  is  reported  to  be  around
70%,  while  syndromic  clefts  are  less  common  but  occur
within broader disorder patterns [4, 5]. The prevalence of
orofacial clefts is about 1 in 700 live births globally, varying
by region; in the U.S., it's estimated at 1 in 1000, with hig-
her rates among Asian and Native American babies [6]. In
South  Korea,  a  study  reported  prevalence  rates  of  Cleft
Palate (CP), Cleft Lip (CL), and Cleft Lip and Palate (CLP)
as 5.57, 2.77, and 2.75 per 10,000 births, respectively [7].
Research on the epidemiology of facial clefts in Arab coun-
tries  indicates  a  higher  incidence  of  these  conditions  in
Egypt, Saudi Arabia, and Iraq [3, 8, 9]. Orofacial clefts can
result in complications such as feeding difficulties, speech
impairments, and social integration challenges, often requi-
ring surgical interventions and specialized therapies to en-
hance function and aesthetics [10].

Finite Element Analysis (FEA) is a numerical technique
that breaks down complex structures into smaller elements
to  predict  force  distribution  and  mechanical  behavior,
making it invaluable for studying craniofacial and dental de-
formations  [11].  Within  the  last  decade,  Finite  Element
Analysis (FEA) has emerged as a reasonably consistent and
reproducible tool for investigating patterns of stress distri-
bution  and  has  been  applied  to  research  in  orthodontics,
orthognathic surgery, and head and facial trauma [12]. In
contrast,  a  wide  range  of  finite  element  analysis  applica-
tions  have  emerged  in  the  field  of  dentistry  [13].  These
applications  are  used  to  determine  various  loads  during
dental  implant  procedures,  design  optimal  dental  crowns
and  bridges,  and  predict  stress  values  in  Temporoman-
dibular  Joint  (TMJ)  treatments  [14-17].  The  majority  of
orthodontic studies applying FEA are limited to the areas of
skull biomechanics, tooth movement, and mechanical loads,
allowing further analysis of deformation, strain, and stress,
as  well  as  craniofacial  modeling  anatomy  to  aid  in  the
understanding of bone remodeling [18, 19]. Finite element
modeling is an appropriate method to analyze and simulate
force application points that can maximize well-controlled
expansion  in  the  UCLP  [20].  Many  studies  have  aimed  to
determine the basic parameters for Nasoalveolar Molding
(NAM) therapy in children; however, their target age popu-
lations  were  often  older  than  the  age  at  which  neonatal
clefts  are  typically  treated  [21-23].  Nasoalveolar  Molding
(NAM) is a presurgical therapy using an intraoral plate with
nasal stents to align alveolar segments and nasal cartilages
which  improve  surgical  outcomes  and  reduce  deformities
[24]. However, the force applied during Nasoalveolar Mol-
ding (NAM) therapy is not standardized and varies depen-

ding  on  the  shape  and  size  of  the  cleft.  Previous  studies
have used different forces, starting as low as 0.65 N [25].

Thus,  this  study  aimed  to  determine  the  stress  distri-
bution  and  possible  deformation  in  the  neurocranial  and
viscerocranial regions of a 17-day-old skull of an infant with
unilateral cleft lip and palate under different stress appli-
cations.  Using  Finite  Element  Analysis  (FEA),  the  study
simulated and assessed the effects of Nasoalveolar Molding
(NAM) therapy on cranial and facial structures.

2. MATERIALS AND METHODS

2.1. Study Design, Ethics, and Criteria
This  prospective  research  was  conducted  in  the  Kur-

distan  region  of  Iraq,  specifically  in  Erbil  province,  from
August 2024 to November 2024. The study adhered to the
ethical  guidelines  outlined  in  the  Declaration  of  Helsinki.
Both  the  study  protocol  and  the  informed  consent  form
were  approved  by  the  local  ethics  committee  at  the  Uni-
versity  of  Duhok,  College  of  Dentistry  -Iraq,  under  this
number (1623/b514/1). Additionally, approval was obtained
to  contact  families  for  potential  future  research  partici-
pation.

The study included a 17-day-old neonate diagnosed with
nonsyndromic unilateral cleft lip and palate and had a nor-
mal head circumference. The measurement of the infant’s
head  circumference  was  performed  using  a  non-elastic
tape, which was placed around the largest area of the head,
starting from the top of the eyebrows and extending to the
back of the head. For further analysis, a complete skull CT
(Computed  tomography)  scan  in  DICOM  (Digital  Imaging
and Communication in Medicine) format was required and
was sourced from Shar Hospital. This dataset included the
scan of the following bones: left zygomatic, mandible, left
temporal, left palatine, left nasal, left maxilla, left lacrimal,
inferior  conchae,  left  parietal,  right  parietal,  ethmoid,
vomer,  sphenoid,  right  zygomatic,  frontal,  right  temporal,
right palatine, right nasal, right maxilla, and right lacrimal.

2.2. 3D Model and Mesh Preparation for FEA
A CT scan of the skull was obtained from Shar Hospital

on June 27, 2024, using a Sensation 16 CT scanner (Siemens
Healthineers,  Germany)  with  a  resolution  of  512  x  512
pixels.  The scan had a pixel size of 0.300781 mm, and the
dataset consisted of 65 slices with a slice thickness of 2 mm.
The  images  were  acquired  using  the  H30s  reconstruction
algorithm,  and  the  software  version  used  was  Syngo  CT
2014A.  The  CT  scan  dataset  was  then  imported  into  dedi-
cated image analysis software, MIMICS® (Mimics Medical
21.0.0.406,  Materialise  NV,  Leuven,  Belgium),  for  further
processing.

In MIMICS®, a predefined CT bone threshold was sel-
ected to isolate the hard tissues of the cranium and maxilla,
resulting in the creation of an optimal-quality 3D model. To
refine  the  data,  the  Region  Growing  algorithm  was  emp-
loyed to  eliminate  any floating pixels,  and local  threshold
adjustments  were  made  to  specific  regions  within  the
segmentation mask. The mask was then edited by splitting
it  to  target  specific  regions  for  further  refinement  selec-
tively. A smoothing mask filter was applied to enhance the
quality  of  the  borders.  The  maxillary  and  alveolar  bones
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were  modeled  with  a  reduced  thickness  compared  to  the
rest of the skull. In contrast, the other cranial regions were
assigned greater thickness. Additionally, a finer geometric
detail was applied to the maxillofacial region to more accu-
rately capture the bone structure for the analysis.

The edited 3D model was imported into 3-MATIC® (3-
Matic Medical 13.0, Materialise NV, Leuven, Belgium) for
further  refinement  and  preparation  for  analysis.  Rectan-
gular  clipping  was  initially  applied  to  isolate  the  working
region of the skull. Following this, the brush and the lasso
area mark tools were applied to find and locate small pores
and roughnesses of the model, which were later filled using
the fill hole option. To depict the triangle edges, the smooth
shaded option was selected, and the diagnostic fix wizard
was used to rectify  any orientation problems with the tri-
angles’  assets.  Following  the  volume  mesh,  a  default  cut
and  standard  section  were  employed.  Using  cross-secti-
oning  in  this  manner  enabled  model  quality  control  and
verification of  the  internal  bone structures  meshing.  Foll-
owing  the  completion  of  the  above  steps,  essential  com-
ponents  such  as  surface  definitions  and  boundary  condi-
tions were defined. Additionally, the skull anatomical struc-
ture was further sectioned into different volumetric regions
with  appropriate  mesh  to  enhance  computing  efficiency
while  modeling  the  interaction  of  the  teeth  and  dental
germs.  Ultimately,  both  the  residuals  uniform  mesh  and
volume mesh were generated to prepare the model for the
finite element analysis.

2.3. Development of Finite Element Model
The ANSYS ICEM CFD (Integrated Computer Enginee-

ring and Manufacturing –  Computational  Fluid  Dynamics)
(ANSYS 2020 R1, ANSYS Inc.; Pennsylvania, USA) software,
which specializes in CFD modeling,  was employed for the
meshing of the skull model. However, in the present work,
some resolution change was needed in different regions of
the  model.  The  octree  meshing  method  was  used  for  the
model  that  was  developed  with  2nd-order  SOLID185  ele-
ments,  generating  approximately  a  range  of  500,000  to
650,000  nodes.  A  geometric  deviation  cutoff  of  0.01  mm
was separated for this study and was sufficient to provide a
quality model for performing finite element analysis (FEA).

Herein, 3D meshes corresponding with the given model
were  imported  back  into  the  MIMICS®  (Mimics  Medical
21.0.0.406;  Materialise  NV;  Leuven,  Belgium)  package,
where  material  properties  were  assigned  to  each  mesh
element. These were based on the Gray Values (GV) corr-
esponding  to  the  Hounsfield  units  (HU)  of  the  scanned
tissues, as determined by CT scan results. This enables the
representation  of  various  materials  for  the  models,  like
bone  and  soft  tissue,  by  associating  their  density  values
with the corresponding hyper mesh regions.

The  boundary  conditions  were  formulated  in  ANSYS
APDL (ANSYS Parametric  Design Language 16.0,  ANSYS,
Inc.; Pennsylvania, USA) via custom scripting for the simu-
lation.  Ultimately,  after  setting  boundary  conditions,  the
model  was  solved  and  the  binary  solution  file  was  post-
processed with ANSYS CFD-Post (ANSYS CFD-Post, ANSYS,
Inc.;  Pennsylvania,  USA)  for  analysis  and  visualization,

which  enables  thorough  post-processing  and  analysis  of
simulation results. Fig. (1) shows the process of FEA mes-
hing and neonatal skull model creation (CT image process,
mesh  development,  properties  assigned,  boundary  con-
ditions).

2.4.  Material  Properties,  Boundary  Conditions,  and
Mechanical Forces

The  neonatal  skull  bone  was  modeled  as  an  isotropic,
linearly  elastic  material,  with  mechanical  properties  esti-
mated from Gray Values (GV), which represent bone density
(method source:0). The GV range was split into 50 sections,
and the elastic modulus was determined through the rela-
tionship  between  bone  density  at  the  local  level  and  GV-
based  (McPherson  &  Kriewall  1980  ref  data).  Mimics
projected these material properties on the model to achieve
an  accurate  representation  of  the  bone  structure  in  the
finite element analysis.

Linear interpolation of the known values for E-modulus
in a newborn (0 days) and 4-week-old infant (28 days) skull
was performed using the data from a previous study [26].
The linear interpolation formula was used to estimate the
range  for  a  17-day-old  infant  skull  (Eq.  1).  E-modulus  for
newborns was found to be lowest at 1337 MPa and highest
at 3367 MPa, while E-modulus for 4-week-old- infants was
minimum at 1737 MPa and maximum was 3367 (Eqs. 2, and
3) according to the linear interpolation formula [27]:

(1)

The following calculations were performed, where X is
the target age (17 days). Regarding the lowest E-modulus:

(2)

For the maximum E-modulus:

(3)

Accordingly,  the  predicted  E-modulus  range  for  the
skull  of  a  17-day-old  newborn  was  roughly  1,580  MPa  to
3,610 MPa.

The aim was to explore stress distribution, cleft width
influence, von Mises stress, and deformations in a 17-day-
old neonatal skull subjected to forces of weight 0.65 N, 0.70
N,  and  0.75  N,  respectively.  These  forces,  among  others,
were  applied  in  the  two  localization  points  of  the  virtual
model  to  study  the  influence  of  stress  on  skull  behavior
under  these  mechanical  conditions.  The  disappearance  of
deformation  from the  skull  was  identified  using  a  critical
threshold of stress 30,000 Pa as probably happening over a
period that particularly applies to positional plagiocephaly.
The threshold was selected for its direct applicability to the
various degrees of deformation observed in positional skull
shapes and acts as a baseline of sorts for assessing changes
in shape due to long-lived effects from similar mechanical
loading.
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Fig. (1). 3D model and mesh preparation for FEA.

2.5. Data Analysis
The results of the finite element analysis were evaluated

using ANSYS CFDPost (ANSYS, Inc.; Pennsylvania, USA) to
examine stress distribution and deformation patterns. Stress
values corresponding to forces of 0.65 N, 0.70 N, and 0.75 N
were  compared,  with  a  focus  on  von  Mises  stress,  and
assessed against a 30,000 Pa threshold to identify potential
deformation risks. Descriptive statistics were then applied to
summarize the data and analyze the effects of different force
levels.

3. RESULTS
FEA  results  of  the  neonatal  skull  bones  force  distri-

bution  (Fig.  2)  were  further  used  to  illustrate  the  stress
uniformly across the skull in finite element analysis. In Fig.
(2), von Mises stress distribution was determined to study
the  effects  of  three  different  forces  (0.65  N,  0.70  N,  and
0.75  N)  on  skull  regions.  The  study  revealed  substantial

stress hotspots at the maxilla, vomer, ethmoid, zygomaticus,
temporalis, lacrimalis, and sphenoid bone, expressing that
each force had a unique effect on skull structure. At a force
of  0.75  N,  the  simulation  results  showed that  the  applied
force traveled more extensively across the palate, from the
point of  application to the opposite side,  compared to the
lower  forces  of  0.65  N and  0.70  N in  the  17-day-old  neo-
natal skull with unilateral cleft lip and palate.

The  maximum  stress  values  observed  were  57,717  Pa
for 0.65 N, 63,200 Pa for 0.70 N, and 77,053 Pa for 0.75 N,
as  shown  in  Figs.  (3)  and  Table  1.  The  arithmetic  mean
stress values for each force were calculated as 26,207 Pa
for  0.65 N and 28,346 Pa for  0.70 N,  both of  which were
below  the  threshold  value  of  30,000  Pa  derived  from  a
plagiocephaly case. However, for 0.75 N, the mean stress
exceeded the threshold, indicating that the applied force at
this  level  could  potentially  lead  to  viscerocranial  defor-
mation. This comparison was used to validate the simulation
results and identify stress patterns of concern.
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Table 1.  Maximum von Mises stress values [Pa] for
the  finite  element  model  of  a  17-day-old  neonate
skull under different applied forces. The peak stress
was identified as the value at the 99.9th percentile.

Model Force 1 Force 2 Force 3

Global Peak von Mises stress [Pa] 57717 63200 77053

4. DISCUSSION
This study aimed to calculate, evaluate, and predict the

stress distribution and potential deformation in a 17-day-old
neonate  skull  with  unilateral  cleft  lip  and  palate  under
varying  mechanical  forces  during  Nasoalveolar  Molding
(NAM) therapy. It focused on force levels that could lead to
deformation, hypothesizing that stresses exceeding 30,000

Pa  in  the  viscerocranium  and  neurocranium  during  NAM
therapy may cause structural changes.

Modeling  biological  systems  presents  significant  chal-
lenges  due  to  their  complex  geometry,  material  hetero-
geneity, and nonlinear behavior [28]. These complexities are
particularly evident in the context of bone metabolism and
healing,  where  hormones  play  a  crucial  regulatory  role,
especially  in  conditions  like  cleft  lip  and  palate  [29].  Key
hormones, including estrogen, testosterone, parathyroid hor-
mone,  insulin,  oxytocin,  cortisol,  angiotensin,  adiponectin,
and  erythropoietin,  significantly  influence  bone  formation
and remodeling [29, 30]. These hormonal effects are critical
for bone recovery in the craniofacial region, which is espe-
cially relevant during surgical interventions or orthodontic
procedures  [29].  However,  the  scarcity  of  infant  samples
further  complicates  the  development  of  accurate  Finite
Element (FE) models, with only a limited number of studies
addressing this issue to date [31-38].

Fig. (2). Von Mises stress distribution in the simulated skull of a 17-day-old patient. The lower row displays the inferior (base) view of the
skull, while the upper row shows the anterior view. Panels A1 and A2 represent the stress distribution for a force of 0.65 N, B1 and B2 for
0.70 N, and C1 and C2 for 0.75 N.
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Fig. (3). Comparison of the resulting stress values for each applied force.

The  modeling  of  the  infant  skull  is  especially  challen-
ging due to its rapid developmental changes and the limited
availability of data on infant crania, largely due to restricted
access  to  infant  samples  [39-41].  The  mechanical  forces
necessary for tissue modeling differ considerably based on
factors such as age, bone characteristics, and the particular
anatomical  area  being  studied.  This  highlights  the  impor-
tance of tailored strategies in treatments [42]. Additionally,
our  understanding  of  the  physical  and  mechanical  forces
that shape and alter the size of an infant’s skull as it grows
after  birth  remains  limited  [28].  To  address  these  chal-
lenges  and  overcome  data  limitations,  we  chose  to  use
linear elastic models. Linear elastic models are widely used
in  infant  head  impact  studies  because  they  are  simple,
require  fewer  measurements,  and  are  computationally
efficient  [35,  37,  43].  However,  these models  cannot  fully
capture  material  behavior  at  high  strains  or  varying
conditions,  as  they  assume  a  linear  relationship  between
stress and strain with no permanent deformation, requiring
only two constants for isotropic materials and more for ani-
sotropic materials - five for a transversely isotropic model
and nine for an orthotropic model [28]. Research has shown
that the elastic modulus and ultimate tensile stress of infant
cranial  bones  and  sutures  increase  with  age  [31].  In
addition,  it  has been noted that the sutures of  infants de-
form much more than the skull bone before failure suggests
brain injury can happen by itself apart from skull fractures
[44].  With  age-dependent  bone  properties  in  mind  when
generating future infant head models [45].

Similar to previous studies [46], skeletal displacements
were analyzed without teeth and periodontal ligament simu-
lation due to the inherent accuracy risk modeling the teeth
and periodontal ligament with CT scans. We modeled only
the bony components of the craniofacial skeleton (limited to

compact  and  cancellous  bone,  excluding  teeth  and  perio-
dontal ligament). Thus, this method provides a more precise
evaluation of bone dynamics, specifically regarding cleft lip
and palate during Nasoalveolar Molding treatment.

With respect to our results, we hypothesized that defor-
mation is likely to occur based on the level of stress, which
could  be  quantified  through  pressure  developed  during
point contact.  Thus,  we established that significant defor-
mation  due  to  stress  in  positional  plagiocephaly  likely
occurs above a threshold of stress of 30,000 Pa. This value
aligned  with  the  results  where  long-lasting  stress  over
30,000  Pa  gave  significant  deformation  on  the  viscero-
cranium and neurocranium [47, 48]. Our findings show that
maximum  stress  values  of  77,053  at  0.75  N  exceed  this
distortion threshold, peak potential distortion in the viscero-
cranium, while lower force (0.65 N and 0.70 N) stay below
the  threshold,  proposing  no  significant  distortion.  These
findings underscore the importance of observing the stress
degree  when  designing  remedy  interventions  that  use
mechanical  force  on  the  infants’  skulls.  The  threshold  we
identify may usher clinicians in optimizing NAM therapy to
achieve  the  desired  facial  shape  while  avoiding  potential
long-term distortion.

4.1. Study Limitations and Considerations
The study employed a simplified model of the newborn

skull,  assuming  isotropic  and  linearly  elastic  properties,
which  fails  to  capture  the  complex  nonlinear  behavior  of
real  bone.  Age-specific  assumptions  were  primarily  based
on limited data for a 17-day-old neonate, potentially redu-
cing accuracy when applied to a broader age range. Addi-
tionally,  the  analysis  was  static  and  did  not  account  for
dynamic forces, infant movements, or variations in pressure
distribution during NAM therapy. Furthermore, the reliance
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on a single patient sample limited the generalizability of the
findings to all cases of cleft lip and palate. These limitations
highlight  the  need  for  more  comprehensive  models  and
larger,  diverse  datasets  in  future  research.

4.2. Future Perspectives
For a better representation of  the biomechanics of  the

baby skull, future studies can concentrate on nonlinear bone
properties  and  use  dynamic  stimulation  to  replicate  the
actual force. As well as individualized 3D models could also
enhance treatment precision based on individual anatomical
traits.

CONCLUSION
In conclusion, the Finite Element Analysis (FEA) of the

neonatal skull with unilateral cleft lip and palate uncovers a
significant impact on stress distribution and viscerocranium
distortion. Lower applied forces (0.65 N and 0.70 N) did not
exceed the distortion threshold of 30,000 Pa, while higher
applied force of 0.75 N exceeds the threshold for distortion.
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